

# IAP400T120 SixPac™

400A / 1200V 3-phase Bridge IGBT Inverter

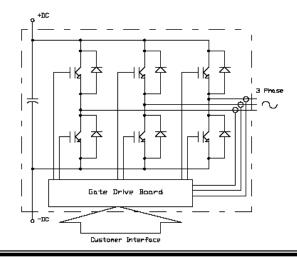
#### IAP400T120 SixPac™ FEATURES INCLUDE



- Compact Size 8.50" H X 23.62" W X 17.64" D
- DC Bus Voltages to 800VDC
- Snubber-less operation to 650VDC
- Switching frequencies to up to 20kHz
- Protective circuitry with fail-safe opto-isolated fault annunciation, including:
  - OverCurrent
- Short circuit
- OverVoltage
- P.S. UnderVoltage
- OverTemperature
- Opto-isolated or fiber-optic gate drive and fault signal output for electrical isolation and noise immunity
- Integrated cooling with temperature sensors and feedback
- Many options Available with IGBTs from 75A to 1400A

**Configurable Power** 

The IAP400T120 SixPac<sup>™</sup> is a flexible, highly integrated IGBT based power assembly with a wide range of applications. These include inverters for motor controls, switch mode power supplies (SMPS), UPS, welders, etc. The IAP400T120 SixPac<sup>™</sup> can be operated at frequencies up to 20kHz. The IAP300T120 SixPac<sup>™</sup> is configured as a three-phase bridge inverter mounted on an air-cooled or liquid-cooled heat sink. Configurations include options for (full, half or no control) converter input circuitry, inverter output circuitry, cooling and a wide variety of drivers and safety features for the converter front end and IGBT inverter output stage.


To operate at high switching frequencies, the IAP400T120 SixPac <sup>™</sup> utilizes a low inductance laminated bus structure, optically isolated or fiber optically coupled gate drive interfaces, isolated gate power supplies and a DC-link capacitor bank.

The IAP400T120 SixPac<sup>™</sup> provides built in protection features including: OverVoltage, UnderVoltage lockout, OverCurrent, OverTemperature, short circuit and optional airflow or liquid flow indicators.

Flexibility is a key feature of the IAP400T120 SixPac<sup>™</sup>. Options include: a choice of converter front ends, rectifier, half or full SCR control, with or without SCR gate firing boards and soft-start circuitry. A choice of cooling methods, forced air or liquid is also available. Customer provided PWM is optically coupled or a fiber optic link can be provided to the IGBT interface. Current feedback is provided by Hall effect current transducers.

The IAP400T120 SixPac<sup>™</sup> is rated to maximum input voltages up to 800 VDC, switching frequencies up to 20kHz, includes many safety features to protect the IGBTs and output circuitry and can be configured to meet your application.

## Schematic:



# IAP400T120 SixPac™

# SixPac™ IAP400T120

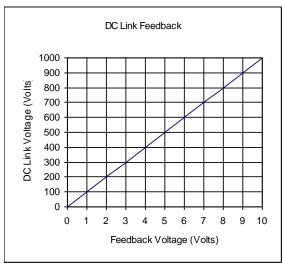
| Absolute Maximum Ratings – T <sub>J</sub> =25°C unless otherwise specified |                  |             |         |  |  |  |  |
|----------------------------------------------------------------------------|------------------|-------------|---------|--|--|--|--|
| General                                                                    | Symbol           | Value       | Units   |  |  |  |  |
| IGBT Junction Temperature                                                  | TJ               | -40 to +150 | °C      |  |  |  |  |
| Storage Temperature                                                        | T <sub>STG</sub> | -40 to +125 | °C      |  |  |  |  |
| Operating Temperature                                                      | T <sub>OP</sub>  | -25 to +85  | °C      |  |  |  |  |
| Voltage applied to DC terminals                                            | Vcc              | 800         | Volts   |  |  |  |  |
| Isolation voltage, AC 1 minute, 60Hz sinusoidal                            | $V_{ISO}$        | 2500        | Volts   |  |  |  |  |
| IGBT Inverter                                                              |                  |             |         |  |  |  |  |
| Collector Current (T <sub>C</sub> =25°C)                                   | I <sub>C</sub>   | 400         | Amperes |  |  |  |  |
| Peak Collector Current (TJ<150°C)                                          | I <sub>CM</sub>  | 800         | Amperes |  |  |  |  |
| Emitter Current                                                            | Ι <sub>Ε</sub>   | 400         | Amperes |  |  |  |  |
| Peak Emitter Current                                                       | I <sub>EM</sub>  | 800         | Amperes |  |  |  |  |
| Maximum Collector Dissipation (TJ<150°C)                                   | P <sub>CD</sub>  | 1660        | Watts   |  |  |  |  |
| Gate Drive Board                                                           |                  |             |         |  |  |  |  |
| Unregulated +24V Power Supply                                              |                  | 30          | Volts   |  |  |  |  |
| Regulated +15V Power Supply                                                |                  | 18          | Volts   |  |  |  |  |
| PWM Signal Input Voltage                                                   |                  | 20          | Volts   |  |  |  |  |
| Fault Output Supply Voltage                                                |                  | 30          | Volts   |  |  |  |  |
| Fault Output Current                                                       |                  | 50          | mA      |  |  |  |  |

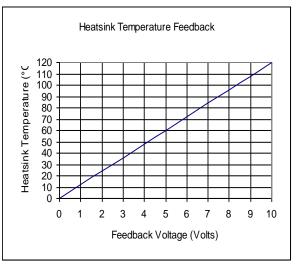
# IGBT Inverter Electrical Characteristics, T<sub>J</sub>=25°C unless otherwise specified

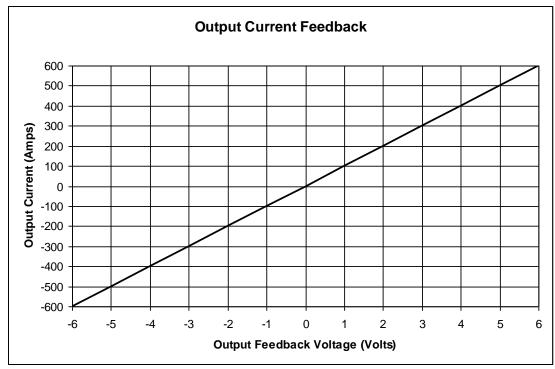
| Parameter                            | Symbol              | <b>Test Conditions</b>                      | Min | Тур   | Max | Units |
|--------------------------------------|---------------------|---------------------------------------------|-----|-------|-----|-------|
| Collector Cutoff Current             | I <sub>CES</sub>    | $V_{CE}=V_{CES}, V_{GE}=0V$                 | -   | -     | 1   | mA    |
| Collector Emitter Seturation Valtage | V                   | I <sub>C</sub> =400A, T <sub>J</sub> =25°C  | -   | 1.8   | 2.4 | Volts |
| Collector-Emitter Saturation Voltage | $V_{CE(sat)}$       | I <sub>C</sub> =400A, T <sub>J</sub> =125°C | -   | 1.9   | -   | Volts |
| Emitter-Collector Voltage            | $V_{EC}$            | IE=400A                                     | -   | -     | 3.2 | Volts |
|                                      | t <sub>d(on)</sub>  |                                             | -   | -     | 300 | ηs    |
| Inductive Load Switching Times       | t <sub>r</sub>      | V <sub>CC</sub> =600V                       | -   | -     | 80  | ηs    |
| Inductive Load Switching Times       | t <sub>d(off)</sub> | I <sub>C</sub> =400A                        | -   | -     | 500 | ηѕ    |
|                                      | t <sub>r</sub>      | V <sub>GE</sub> =15V                        | -   | -     | 300 | ηѕ    |
| Diode Reverse Recovery Time          | t <sub>rr</sub>     | $R_G=1.6\Omega$                             | -   | -     | 200 | ηѕ    |
| Diode Reverse Recovery Charge        | Q <sub>rr</sub>     |                                             | -   | 24.4  | -   | μC    |
| DC Link Capacitance                  |                     |                                             | -   | 9,900 | -   | μF    |

#### **Thermal and Mechanical Parameters**

| Parameter                                 | Symbol              | <b>Test Conditions</b> | Min | Тур  | Max  | Units |
|-------------------------------------------|---------------------|------------------------|-----|------|------|-------|
| IGBT Thermal Resistance, Junction to Case | R <sub>⊝(i-c)</sub> | Per IGBT ½ module      | -   | -    | 0.15 | °C/W  |
| FWD Thermal Resistance, Junction to Case  | R <sub>⊝(i-c)</sub> | Per FWD ½ module       | -   | -    | 0.18 | °C/W  |
| Heatsink Thermal Resistance               | R <sub>⊙(s-a)</sub> | 1500 LFM airflow       | -   | .045 | -    | °C/W  |
| Mounting Torque, AC terminals             |                     |                        | -   | 75   | 90   | In-lb |
| Mounting Torque, DC terminals             |                     |                        | -   | 130  | 150  | In-lb |
| Mounting Torque, case mounting            |                     |                        | -   | 130  | 150  | In-lb |
| Weight                                    |                     |                        | -   | 70   | -    | lb    |

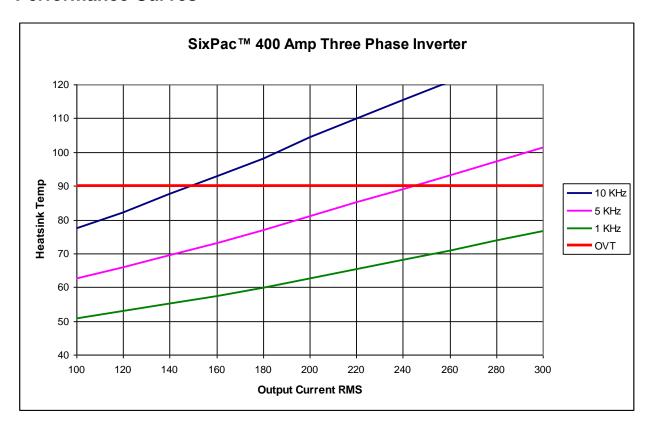

124 Charlotte Avenue • Hicksville, NY 11801 • Ph: 516.935.2230 • Fax: 516.935.2603 • Website: www.appliedps.com





# IAP400T120 SixPac<sup>™</sup> 400A / 1200V 3-phase Bridge IGBT Inverter

#### **Gate Drive Board Electrical Characteristics**

| Parameter                     | Min   | Тур     | Max  | Units   |
|-------------------------------|-------|---------|------|---------|
| Unregulated +24V Power Supply | 20    | 24      | 30   | Volts   |
| Regulated +15V Power Supply   | 14.4  | 15      | 18   | Volts   |
| PWM Input On Threshold        | 12    | 15      | •    | Volts   |
| PWM Input Off Threshold       | 1     | 0       | 2    | Volts   |
| Output OverCurrent Trip       | 1     | 600     | ı    | Amperes |
| OverTemperature Trip          | 88    | 90      | 92   | °C      |
| OverVoltage Trip              | -     | 900     | -    | Volts   |
| DC Link Voltage Feedback      | See F | igure B | elow | Volts   |
| Heatsink Temperature Feedback | See F | igure B | elow | Volts   |
| Output Current Feedback       | See F | igure B | elow | Volts   |










# **Performance Curves**



| Conditions           | Symbol                              | Value | Units |  |
|----------------------|-------------------------------------|-------|-------|--|
| Ambient Temperature  | T <sub>A</sub>                      | 40    | °C    |  |
| DC Bus Voltage       | V <sub>CC</sub>                     | 600   | Volts |  |
| Load Power Factor    | COS Φ                               | 0.8   |       |  |
| Airflow              | -                                   | 1500  | LFM   |  |
| Switching Conditions | 3-phase PWM, 60Hz sinusoidal output |       |       |  |

### Options for the BAP300T120-XX

|                            | Option Number |    |    |    |    |    |    |    |    |
|----------------------------|---------------|----|----|----|----|----|----|----|----|
| Option                     | 01            | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |
| Blower                     | Х             |    | Х  |    | Х  |    | Х  |    | Х  |
| Half-Control SCR Converter |               | Х  | Х  |    |    |    |    |    |    |
| Full Control SCR Converter |               |    |    | Х  | Х  |    |    |    |    |
| Diode Converter            |               |    |    |    |    | Х  | Х  |    |    |
| Dual Inverter              |               |    |    |    |    |    |    | Х  | X  |



# IAP400T120 SixPac™

## 400A / 1200V 3-phase Bridge IGBT Inverter

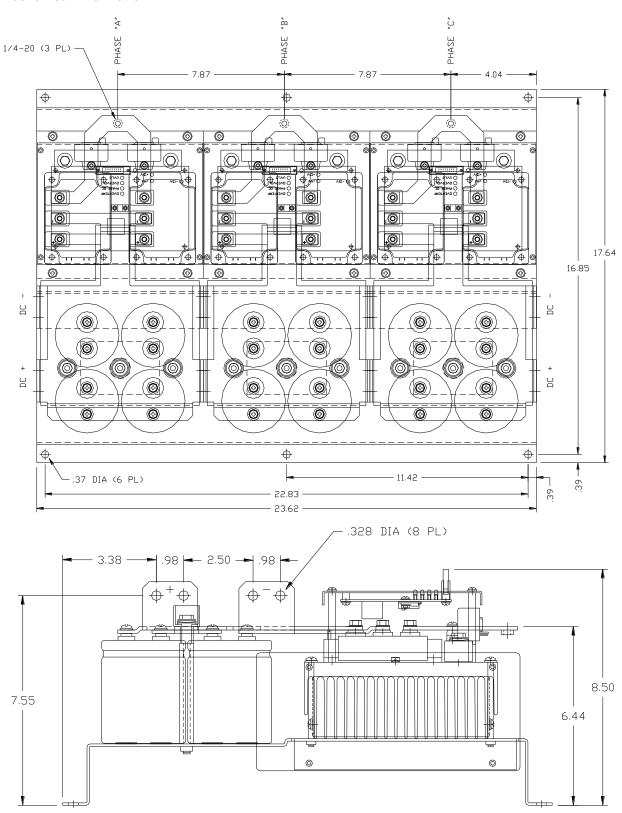
#### Interface

| Pin | Signal Name                       | Description                                                        |
|-----|-----------------------------------|--------------------------------------------------------------------|
| 1   | Shield                            | Connected to circuit ground                                        |
| 2   | Lo Side Switch (PWM-)             | 0 – 15V signal controlling the duty cycle of Lo Side Switch IGBT   |
| 3   | Phase Error <sup>1</sup>          | Open collector output, external pull-up resistor required          |
|     |                                   | LOW = No Error; Floating = Phase A overcurrent or short circuit    |
| 4   | High Side Switch (PWM+)           | 0 – 15V signal controlling the duty cycle of High Side Switch IGBT |
| 5   | Overtemp <sup>1, 4</sup>          | Open collector output, external pull-up resistor required          |
|     |                                   | LOW = No Error; Floating = heatsink overtemp                       |
| 6   | 24 VDC input power <sup>2</sup>   | 20 – 30 VDC input voltage range                                    |
| 7   | 24 VDC input power <sup>2</sup>   | 20 – 30 VDC input voltage range                                    |
| 8   | 15 VDC input power <sup>2</sup>   | 14.4 – 18 VDC input voltage range                                  |
| 9   | 15 VDC input power <sup>2</sup>   | 14.4 – 18 VDC input voltage range                                  |
| 10  | GND                               | Ground reference for 15 and 24 VDC inputs                          |
| 11  | GND                               | Ground reference for 15 and 24 VDC inputs                          |
| 12  | Heatsink Temperature <sup>5</sup> | Analog voltage representation of heatsink temperature              |
| 13  | GND <sup>3</sup>                  | Ground reference for analog signals                                |
| 14  | I <sub>OUT</sub>                  | Analog voltage representation of output current                    |
| 15  | GND <sup>3</sup>                  | Ground reference for 15 and 24 VDC inputs                          |
| 16  | DC Link Voltage                   | Analog representation of DC Link voltage; 0V represents 0V on the  |
|     | _                                 | DC Link, 9V represents 900V on DC Link                             |

#### NOTES:

- 1. Open collectors can be pulled up to 30VDC Max and sink 50mA continuous.
- 2. **DO NOT** connect a 15VDC and 24VDC source to the unit at the same time. Use one or the other.
- 3. GND signals to be used for analog feedback signals, i.e. twisted pair with I<sub>OUT</sub> Phase A.
- 4. The error signal on pin 5 is the ORed output of the OverVoltage, OverTemp and UVLO fault signals. An LED will illuminate on the board to differentiate specific faults.
- 5. The gate drive board can be configured with a 14 pin connector, providing **either** heatsink temperature or DC Link Voltage at pin 12.

#### **Gate Drive Interface Connector**


| Description                 | Symbol | Туре                                    | Manufacturer                |
|-----------------------------|--------|-----------------------------------------|-----------------------------|
| Gate Drive Interface Header | J1     | 0.100" x 0.100" latching header, 26 pin | 3M #3429-6002 or equivalent |
| Recommending Mating Socket  | -      | 0.100" x 0.100" IDC socket, 26 pin      | 3M #3399-7600 or equivalent |
| Recommended Strain Relief   | -      | Plastic strain relief                   | 3M #3448-3026 or equivalent |

124 Charlotte Avenue • Hicksville, NY 11801 • Ph: 516.935.2230 • Fax: 516.935.2603 • Website: www.appliedps.com
Page 5 of 6



# IAP400T120 SixPac<sup>™</sup> 400A / 1200V 3-phase Bridge IGBT Inverter

#### **Mechanical Information**

